(*Corresponding author/通讯作者)
[1] J. Wu#, Y. Hirono#, X. L. Li#, Z. M. Wang*, J. H. Lee, M. Benamara, S. Luo, Y. I. Mazur, E. S. Kim, and G. J. Salamo. Self-Assembly of Multiple Stacked Nanorings by Vertically Correlated Droplet Epitaxy, Advanced Functional Materials DOI: 10.1002/adfm.201302032 (2013). (#These authors contributed equally/同等贡献)
[2] X. L. Li*, Selective formation mechanisms of quantum dots on patterned substrates, Physical Chemistry Chemical Physics 15, 5238 (2013).
[3] X. L. Li*. Theory of controllable shape of quantum structures upon droplet epitaxy, Journal of Crystal Growth 377, 59 (2013).
[4] X. L. Li*, Size effects of carbon nanotubes and graphene on cellular uptake, EPL 100, 46002 (2012).
[5] X. L. Li*, The influence of the atomic interactions in out-of-plane on surface energy and its applications in nanostructures, Journal of Applied Physics 112, 013524 (2012).
[6] X. L. Li*, Size and shape effects on receptor-mediated endocytosis of nanoparticles, Journal of Applied Physics 111, 024702 (2012).
[7] X. L. Li* and G. Ouyang, Thermodynamic theory of controlled formation of strained quantum dots on hole-patterned substrates, Journal of Applied Physics 109, 093508 (2011).
[8] X. L. Li*, G. Ouyang and X. Tan, Thermodynamic stability of quantum dots on strained substrates, Phyisca E 43, 1755 (2011).
[9] X. L. Li* and D. Xing, A simple method to evaluate the optimal size of nanoparticles for endocytosis based on kinetic diffusion of receptors, Applied Physics Letters 97, 153704 (2010).
[10]X. L. Li*, Y. Y. Cao and G. W. Yang, Thermodynamic theory of two-dimensional to three-dimensional growth transition in quantum dots self-assembly, Physical Chemistry Chemical Physics 12, 4768 (2010).
[11]X. L. Li*, Formation mechanisms of multiple concentric nanoring structures upon droplet epitaxy, Journal of Physical Chemistry C 114, 15343 (2010).
[12]X. L. Li*, Thermodynamic Theory of quantum dot self-assembly on strained substrates, Journal of Physical Chemistry C 114, 2018 (2010).
[13]X. L. Li*, Thermodynamic analysis on the stability and evolution mechanism of self-assembled quantum dots, Applied Surface Science 256, 4023 (2010).
[14]X. L. Li*, Surface chemical potential in multilayered Stranski-Krastanow systems: An analytic study and anticipated applications, Journal of Applied Physics 106, 113520 (2009).
[15]X. L. Li and G. W. Yang, On the physical understanding of quantum rings self-assembly upon droplet epitaxy, Journal of Applied Physics 105, 103507 (2009).
[16]X. L. Li and G. W. Yang, Thermodynamic theory of shape evolution induced by Si capping in Ge quantum dots self-assembly, Journal of Applied Physics 105, 013510 (2009).
[17]X. L. Li and G. W. Yang, Strain self-releasing mechanism in heteroepitaxy on nanowire, Journal of Physical Chemistry C 113, 12402 (2009).
[18]X. L. Li and G. W. Yang, Theoretical determination of contact angle in quantum dot self-assembly, Applied Physics Letters 92, 171902 (2008).
[19]X. L. Li and G. W. Yang, Growth mechanisms of quantum ring self-assembly upon droplet epitaxy, Journal of Physical Chemistry C 112, 7693 (2008).
[20]X. L. Li, G. Ouyang and G. W. Yang, A thermodynamic theory of the self-assembly of quantum dots, New Journal of Physics 10, 043007 (2008).
[21]X. L. Li, G. Ouyang and G. W. Yang, Surface Alloying at the Nanoscale: Mo on Au Nanocrystalline Films, Nanotechnology 19, 505303 (2008).
[22]X. L. Li, G. Ouyang and G. W. Yang, Thermodynamic model of metal-induced self-assembly of Ge quantum dots on Si substrates, European Physical Journal B 62, 295 (2008).
[23]X. L. Li, G. Ouyang and G. W. Yang, Thermodynamic theory of nucleation and shape transition of strained quantum dots,Physical Review B 75, 245428 (2007).
[24]Y. Y. Cao, X. L. Li and G. W. Yang, Physical mechanism of quantum dot to quantum ring transformation upon capping process, Journal of Applied Physics 109, 083542 (2011).
[25]Y. Y. Cao, X. L. Li and G. W. Yang, Wetting layer evolution upon quantum dots self-assembly, Applied Physics Letters 95, 231902 (2009).
[26]G. Ouyang, X. L. Li and G. W. Yang, Superheating and melting of nanocavities, Applied Physics Letters 92, 051902 (2008).
[27]X. Tan, X. L. Li and G. W. Yang, Theoretical strategy for self-assembly of quantum rings, Physical Review B 77, 245322 (2008).
[28]G. Ouyang, X. L. Li, X. Tan and G. W. Yang, Surface free energy of nanowires, Nanotechnology 19, 045709 (2008).
[29]G. Ouyang, X. L. Li and G. W. Yang, Sink-effect of nanocavities: Thermodynamics and kinetic approach, Applied Physics Letters 91, 051901 (2007).
[30]G. Ouyang, X. L. Li, X. Tan and G. W. Yang, Anomalous Young’s modulus of a nanotube, Physical Review B 76, 193406 (2007).
[31]G. Ouyang, X. L. Li, X. Tan and G. W. Yang, Size-induced strain and stiffness of nanocrystals, Applied Physics Letters 89, 031904 (2006).