代表性论文
[1] Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications 2019, 10, 1789.(共同通讯;综合类1区,IF: 16.6;ESI高被引论文,>400次)
[2] "Afterglow" Photodynamic Therapy Based on Carbon Dots Embedded Silica Nanoparticles for Nondestructive Teeth Whitening. ACS Nano 2023, 17, 21195 (最终通讯;材料科学1区,IF: 17.1)
[3] Silver@prussian blue core-satellite nanostructures as multimetal ions switch for potent zero-background SERS bioimaging-guided chronic wound healing. Nano Letters 2023, 23, 8761.(最终通讯;材料科学1区,IF: 10.8)
[4] NIR-II responsive molybdenum dioxide nanosystem manipulating cellular immunogenicity for enhanced tumor photoimmunotherapy. Nano Letters 2022, 22, 4741.(最终通讯;材料科学1区,IF: 10.8)
[5] Carbon dots with intrinsic bioactivities for photothermal optical coherence tomography, tumor-specific therapy and postoperative wound management. Advanced Healthcare Materials 2022, 11, 2101448.(最终通讯;工程技术1区,IF: 10)
[6] 2D-PROTACs with augmented protein degradation for super-resolution photothermal optical coherence tomography guided momentary multimodal therapy. Chemical Engineering Journal 2022, 446, 137039.(最终通讯;工程技术1区,IF: 15.1)
[7] In situ photothermal activation of necroptosis potentiates black phosphorus-mediated cancer photo-immunotherapy. Chemical Engineering Journal 2020, 394, 124314.(最终通讯;工程技术1区,IF: 15.1)
[8] Visible-light excitable thermally activated delayed fluorescence in aqueous solution from F, N-doped carbon dots confined in silica nanoparticles. Chemical Engineering Journal 2021, 426, 130728.(共同通讯;工程技术1区,IF: 15.1)
[9] Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy. Theranostics 2016, 6, 1096. (共同通讯;医学1区,IF: 12.4)
[10] Redox responsive nanoparticle encapsulating black phosphorus quantum dots for cancer theranostics. Bioactive Materials 2021, 6, 655.(共一;工程技术1区,IF: 18.9)
[11] Fluorescein-derived carbon dots with chitin-targeting for ultrafast and superstable fluorescent imaging of fungi. Nanophotonics 2022, 11, 5121.(独立通讯;物理与天体物理1区,IF: 7.5)
[12] Lamellar hafnium ditelluride as an ultrasensitive surface-enhanced Raman scattering platform for label-free detection of uric acid. Photonics Research 2021, 9, 1039.(最终通讯;物理与天体物理1区,IF: 7.6)
[13] Insights into the intracellular behaviors of black-phosphorus-based nanocomposites via surface-enhanced Raman spectroscopy. Nanophotonics 2018, 7, 1651.(共同通讯;物理与天体物理1区,IF: 7.5)
[14] Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy. Analytical Chemistry 2012, 84, 10338. (第一作者;化学1区,IF: 7.4)
其他论文
[1] Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chin. Chem. Lett. 2023, 109295. (共同通讯)
[2] Label-Free Surface-Enhanced Raman Scattering Bioanalysis Based on Au@Carbon Dot Nanoprobes. J Vis Exp 2023, e65524. (最终通讯)
[3] Cascade resonance energy transfer for the construction of nanoparticles with multicolor long afterglow in aqueous solutions for information encryption and bioimaging. Advanced Optical Materials 2022, 10, 2102666.(共一)
[4] Mussel-inspired hydrogels for fast fabrication of flexible SERS tape for point-of-care testing of beta-blockers. Analyst 2022, 147, 3652. (共同通讯)
[5] Nanocomposite of Au and black phosphorus quantum dots as versatile probes for amphibious SERS spectroscopy, 3D photoacoustic imaging and cancer therapy. Giant. 2021, 8, 100073. (共一)
[6] Quantitative label-free optical technique to analyze the ultrastructure changes and spatiotemporal relationship of enamel induced by Msx2 deletion. J. Biophoton. 2021, e202100165. (最终通讯)
[7] Progress in the development and application of transitional technology of surface-enhanced Raman spectroscopy. Coll. Int. Sci. Commun. 2021, 43, 100443. (最终通讯)
[8] Dual-responsive ultrathin 1T-phase niobium telluride nanosheet-based delivery systems for enhanced chemo-photothermal therapy. J. Mater. Chem. B. 2021, 9, 8109. (最终通讯)
[9] Insights into the deep-tissue photothermal therapy in near-infrared II region based on tumor-targeted MoO2 nanoaggregates. Sci. China Mater. 2020, 63, 1085. (最终通讯)
[10] SERS analysis of carcinoma-associated fibroblasts in a tumor microenvironment based on targeted 2D nanosheets. Nanoscale. 2020, 12, 2133. (最终通讯)
[11] Photo-induced synthesis of molybdenum oxide quantum dots for surface-enhanced Raman scattering and photothermal therapy. J. Mater. Chem. B. 2020, 8, 1040. (共同通讯)
[12] Few-Layer NbTe2 Nanosheets as Substrates for Surface-Enhanced Raman Scattering Analysis. ACS Appl. Nano Mater. 2020, 3, 11363. (最终通讯)
[13] Rapid label-free SERS detection of foodborne pathogenic bacteria based on hafnium ditelluride-Au nanocomposites, J. Innov. Opt. Heal. Sci. 2020, 13, 2041004. (封面论文,最终通讯)
[14] Morphology-controlled Synthesis of Molybdenum Oxide with Tunable Plasmon Absorption for Phothermal Therapy of Cancer. ChemNanoMat. 2020, 6, 1407. (共同通讯)
[15] Facile synthesis of metal-phenolic-coated gold nanocuboids for surface-enhanced Raman scattering. Appl Opt. 2020, 59, 6124. (最终通讯)
[16] Facile hot spots assembly on molybdenum oxide nanosheets via in situ decoration with gold nanoparticles. Appl. Surf. Sci. 2019, 480, 1162. (共同通讯)
[17] Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria. Appl. Surf. Sci. 2019, 497, 143825. (共同通讯)
[18] Biodegradable black phosphorus-based nanomaterials in biomedicine: Theranostic applications. Curr Med Chem. 2019, 26, 1788. (共一)
[19] Molybdenum oxide nano-dumplings with excellent stability for photothermal cancer therapy and as a controlled release hydrogel. New J. Chem. 2019, 43, 14281. (共同通讯)
[20] Black phosphorus-polypyrrole nanocomposites for high-performance photothermal cancer therapy. New J. Chem. 2019, 43, 8620. (最终通讯)
[21] Full-scale label-free surface-enhanced Raman scattering analysis of mouse brain using a black phosphorus-based two-dimensional nanoprobe. Appl. Sci. 2019, 9, 398 (独立通讯)
[22] A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale 2018, 10, 18795. (通讯、第一作者)
[23] Investigating the autophagy pathway in silver@gold core–shell nanoparticles-treated cells using surface-enhanced Raman scattering. Analyst 2018, 143, 3677. (共同通讯)
[24] Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale 2018, 10, 5997. (共同通讯)
[25] Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy, ACS Appl. Mater. Interfaces 2017, 9, 25098. (共同通讯)
[26] Facile synthesis of black phosphorus-Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis, Biomater. Sci. 2017, 5, 2048. (共一)
[27] Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging, Int. J. Nanomed. 2017, 12, 4349. (最终通讯)
[28] Melanin-Associated Synthesis of SERS-Active Nanostructures and the Application for Monitoring of Intracellular Melanogenesis, Nanomaterials 2017, 7, 70. (共同通讯)
[29] Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe, Anal. Bioanal. Chem. 2017, 409, 1387. (通讯作者)
[30] One-pot green synthesis of flower-liked Au NP@GQDs nanocomposites for surface-enhanced Raman scattering, J. Alloy. Compd. 2017, 725, 1084. (共一)
[31] Synthesis of Au NP@MoS2 quantum dots core@shell nanocomposites for SERS bio-analysis and label-free bio-imaging. Materials. 2017, 10, 650. (共同通讯)
[32] Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 2015, 7, 6754. (通讯、第一作者)
[33] A facile one-pot method to two kinds of graphene oxide-based hydrogels with broad-spectrum antimicrobial properties. Chem. Eng. J. 2015, 260, 331. (共同通讯)
[34] Polyaniline nanoparticles: potential optical coherence tomography contrast agents. J. Opt. Technol. 2015, 82, 639. (共一)
[35] Mitochondrial-Targeted Polyethylenimine Functionalized Graphene Oxide Nanocarrier and its Anti-Tumor Effect on Human Lung Carcinoma Cells. NANO. 2015, 10, 1550121 (共一)
[36] In situ green synthesis of silver-graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Appl. Surf. Sci. 2014, 316, 22. (第一作者)
[37] Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys. 2013, 15, 2961. (第一作者)
[38] Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res. Lett. 2014, 9, 108. (第一作者)
[39] pH-dependent surface-enhanced Raman scattering of aromatic molecules on graphene oxide. J. Raman Spectrosc. 2013, 44: 75-80. (第一作者)
[40] Conformation-dependent surface-enhanced Raman scattering of graphene oxide/metal nanoparticle hybrids. Chin. Opt. Lett. 2013, 11, 083001. (第一作者)
[41] Quantitative optical coherence tomography of skin lesions induced by different ultraviolet B sources. Phys. Med. Biol. 2010, 55, 6175. (第一作者)
出版著作
1. Zhiming Liu and Zhouyi Guo, Applications of graphene-based nanomaterials in cancer research, In: Boveri R, editor. Graphene Oxide: Synthesis, Mechanical Properties and Applications. Nova Science Publishers, New York, USA, 2014: 33-66. URL: www.novapublishers.com
2. Yanxian Guo, Zhiming Liu, Wen Zhang and Zhouyi Guo, New advances in graphene oxide-metal nanocomposites for cancer theranostics. In: Ajay Kumar Mishra and Deepak Pathania, editors. Graphene Oxide: Advances in Research and Applications. Nova Science Publishers, New York, USA, 2018: 61-86. URL: www.novapublishers.com
授权专利
1) 刘智明, 陈伊巧, 刘傲, 杨必文, 郭周义. 一种用于真菌检测的荧光素碳点染色试剂、染色方法和应用,发明专利,中国,2023.06.06,ZL202111047603.3.
2) 刘智明, 刘皓, 莫洛淇, 郭周义, 邹争志. 一种利用余辉光动力效应的牙齿漂白方法和牙齿漂白碳点试剂及其制备方法,发明专利,中国,2023.06.23,ZL202210363329.9.
3) 刘智明, 郭周义, 黄汉传, 一种黑磷-金属纳米复合材料及其合成方法和应用, 发明专利,中国,2019.07.05,ZL201610928015.3.
4) 刘智明, 郭周义, 一种NIR SERS探针及其制备方法和应用, 中国,2017.01.04,ZL201410178898.1.
5) 刘智明, 郭周义, 一锅法合成海胆状金纳米粒子和球状聚苯胺的方法及应用, 中国,2018.02.23, 专利号: ZL201510944293.3.
6) 刘智明, 杨辉, 周艳, 郭周义, 叶丙刚, 陈浩琳, 李颂扬, 龙佳, 林锦, 一种细胞内黑色素的快速检测与成像的方法, 中国,2018.02.16, ZL201410513894.4.
7) 刘智明, 郭周义, 一种用于SERS检测的试样过滤装置, 中国,2019.03.22,ZL201820769774.4.